5 Extended Supersymmetries and the Dirac Operator
نویسندگان
چکیده
We consider supersymmetric quantum mechanical systems in arbitrary dimensions on curved spaces with nontrivial gauge fields. The square of the Dirac operator serves as Hamiltonian. We derive a relation between the number of supercharges that exist and restrictions on the geometry of the underlying spaces as well as the admissible gauge field configurations. From the superalgebra with two or more real supercharges we infer the existence of integrability conditions and obtain a corresponding superpotential. This potential can be used to deform the supercharges and to determine zero modes of the Dirac operator. The general results are applied to the Kähler spaces È n .
منابع مشابه
Extended Supersymmetries and the Dirac Operator
We consider supersymmetric quantum mechanical systems in arbitrary dimensions on curved spaces with nontrivial gauge fields. The square of the Dirac operator serves as Hamiltonian. We derive a relation between the number of supercharges that exist and restrictions on the geometry of the underlying spaces as well as the admissible gauge field configurations. From the superalgebra with two or mor...
متن کاملSymmetries and Supersymmetries of the Dirac-Type Operators on Curved Spaces
The role of the Killing–Yano tensors in the construction of the Dirac-type operators is pointed out. The general results are applied to the case of the four-dimensional Euclidean Taub–Newman–Unti–Tamburino space. Three new Dirac-type operators, equivalent to the standard Dirac operator, are constructed from the covariantly constant Killing–Yano tensors of this space. Finally the Runge–Lenz oper...
متن کاملar X iv : h ep - t h / 04 11 01 6 v 2 2 5 Fe b 20 08 Symmetries and supersymmetries of the Dirac operators in curved spacetimes ∗
It is shown that the main geometrical objects involved in all the symmetries or supersymmetries of the Dirac operators in curved manifolds of arbitrary dimensions are the Killing vectors and the Killing-Yano tensors of any ranks. The general theory of external symmetry transformations associated to the usual isometries is presented, pointing out that these leave the standard Dirac equation inva...
متن کاملInverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملMonopole Supersymmetries and the Biedenharn Operator
The hidden supersymmetry of the monopole found by De Jonghe et al. is generalized to a spin 1 2 particle in the combined field of a Dirac monopole plus a λ 2 /r 2 potential [considered before by D'Hoker and Vinet], and related to the operator introduced by Biedenharn a long time ago in solving the Dirac-Coulomb problem. Explicit solutions are obtained by diagonalizing the Biedenharn operator.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005